| Interface and Description | 
|---|
| org.apache.spark.AccumulableParam
 use AccumulatorV2. Since 2.0.0. 
 | 
| org.apache.spark.AccumulatorParam
 use AccumulatorV2. Since 2.0.0. 
 | 
| Class and Description | 
|---|
| org.apache.spark.Accumulable
 use AccumulatorV2. Since 2.0.0. 
 | 
| org.apache.spark.Accumulator
 use AccumulatorV2. Since 2.0.0. 
 | 
| org.apache.spark.AccumulatorParam.DoubleAccumulatorParam$
 use AccumulatorV2. Since 2.0.0. 
 | 
| org.apache.spark.AccumulatorParam.FloatAccumulatorParam$
 use AccumulatorV2. Since 2.0.0. 
 | 
| org.apache.spark.AccumulatorParam.IntAccumulatorParam$
 use AccumulatorV2. Since 2.0.0. 
 | 
| org.apache.spark.AccumulatorParam.LongAccumulatorParam$
 use AccumulatorV2. Since 2.0.0. 
 | 
| org.apache.spark.AccumulatorParam.StringAccumulatorParam$
 use AccumulatorV2. Since 2.0.0. 
 | 
| org.apache.spark.sql.hive.HiveContext
 Use SparkSession.builder.enableHiveSupport instead. Since 2.0.0. 
 | 
| org.apache.spark.mllib.regression.LassoWithSGD
 Use ml.regression.LinearRegression with elasticNetParam = 1.0. Note the default regParam is 0.01 for LassoWithSGD, but is 0.0 for LinearRegression. Since 2.0.0. 
 | 
| org.apache.spark.mllib.regression.LinearRegressionWithSGD
 Use ml.regression.LinearRegression or LBFGS. Since 2.0.0. 
 | 
| org.apache.spark.mllib.classification.LogisticRegressionWithSGD
 Use ml.classification.LogisticRegression or LogisticRegressionWithLBFGS. Since 2.0.0. 
 | 
| org.apache.spark.mllib.regression.RidgeRegressionWithSGD
 Use ml.regression.LinearRegression with elasticNetParam = 0.0. Note the default regParam is 0.01 for RidgeRegressionWithSGD, but is 0.0 for LinearRegression. Since 2.0.0. 
 |