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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I'm looking forward to future milestones.

With that in mind I've introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))



Chapter 1

Implementation

1.1 Elementary Functions[4]

1.1.1 Rationale for Branch Cuts and Identities

Perhaps one of the most vexing problems to be addressed when attempting to determine a
set of mathematical function definitions is the choice of the principal branches of the inverses
of the exponential, trigonometric and hyperbolic functions, and, further, the mathematical
form that these functions take on their domains (the complex plane slit by the correspond-
ing branch cuts). The fundamental issue facing the mathematical library developer is the
plethora of possibilities, and while some choices are demonstrably inferior, there is rarely a
choice which is clearly best.

Following Kahan [1], we will refer to the mathematical formula we use to define the principal
branch of each such function as its principal expression. For the inverse trigonometric and
inverse hyperbolic functions, this principal expression is given in terms of the functions In z

and /z.

The choices set out in this Standard are derived from the following principles:

1. Branch cuts must lie completely within either the real or imaginary axis.

2. The principal expression must not have any singularities at finite points which the
original function does not share.

3. Branch cuts end at branch points.

4. Where not otherwise determined, the value of a function on its branch cut or cuts
is obtained by taking a limit along a path which approaches the branch cut in a
counterclockwise manner around one of the branch points which terminate the cut
(counterclockwise continuity, or CCC for short).

5. Each inverse trigonometric or hyperbolic function must be real-valued on the range
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of the corresponding trigonometric or hyperbolic function when restricted to the real
axis.

Further explanation of these principles can be found in [1].

While standard identities such as ln% = —Inz hold for > 0, they generally fail to hold
for complex arguments of principal branches, even complex arguments which do not lie on a
branch cut. Consequently, a definition of, say,

i
arctan z = §(IH(1 —iz) —In(l+iz))
is not the same as the apparently equivalent
. 11—z
7ln -
1414z
It can be challenging to decide if two candidate expressions for representing an inverse

trigonometric or hyperbolic function which agree in the mathematical domain are the same
in the restricted computational realm of principal expressions.

If the underlying computational mathematical system supports a signed zero, as prescribed
by the IEEE/754 Standard [2], then a larger set of identities will hold. For example,

1
In-=—-Inz
z

holds for all complex z in such a system, as do conjugate symmetry relations for functions
such as arcsin z. However, identities such as Inzw = In z 4+ Inw still fail to hold for some
complex z and w.

A useful function for representing identities involving complex functions which are related
to the logarithm function is the complex signum function, defined as:

csgn(z) = 1, ifRz>0o0rRz=0and Sz>0
& Tl -1, ifRz<0orRz=0and Iz <0

The value of csgn(0) is unspecified. Note, for example, that v 22 = zcsgn(z).

Using the principal expressions for each of the 12 inverse trigonometric and hyperbolic func-
tions as given in this Standard, we have the following relations and identities:
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1.1.2 Inverse trigonometric functions

arcsin(z)

— arcsin(—z)
T
— — arccos(z)

—iarcsinh(iz)

arccos(z)

7 — arccos(—z)
T_ arcsin(z)
2 )

icsgn(i(z — 1))arccosh(z)

arctan(z)

— arctan(—z)
T
5 arccot(z)

—iarctanh(iz)

. < 1+iz>
—iln [ ———=
2241

arccot(z)

7 — arccot(—2z)

T

5 arctan(z)

iarccoth(iz) + z(1 —csgn(z + 1))

. ( z4+1
—ln [ ——
22+1

arcesc(z)

—arcesc(—z2)
arcsin( ;)

™

5 arcsec(z)

i arccsch(iz)

arcsec(z)

7 — arcsec(—z)
1

arccos(—)

- z

— — arcese(z)

icsgn(i(% — 1))arcsech(z)




1.1.3 Inverse hyperbolic functions

CHAPTER 1.

= —arcsinh(—z)

arcsinh(z) | = gz — csgn(i — z)arccosh(—iz)
= —ijarcsin(iz)
=dcsgn(i(1 — z))arccos(z)
arccosh(z) | _ csgn(i(1l — z))(gz — arcsinh(iz))
= —arctanh(—z)
= arccoth(z) — gicsgn(i(z -1))
arctanh(z) | = —iarctan(iz)
=
- I
1—22
. .
= arctanh(z) + 2 csgn(i(z — 1))
arccoth(z) | = idarccot(iz) + ) i(csgn(i(z — 1)) — 1)
= jarctan(—iz) + gicsgn(z’(z -1))
= —arccsen(—2z)
) 1
= arcsinn(—)
arcesch(z) z o
= csgn(i + —)arcsech(—iz) — 51
z
= jarcesc(iz)
1
= arccosh(—)
arcsech(z) | =icsgn(i(1 — —))arcsec(z)
z

1
= csgn(i(l — ;))(gz + arcesch(iz)

IMPLEMENTATION
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