$SPAD /sre/interp Makefile

Timothy Daly
July 31, 2014

Abstract

Contents

1 Notes

2 The Environment

3 Proclaim optimization
4 The warm.data file

5 Building DEPSYS
5.1 save depsys imageo

6 Building SAVESYS and AXIOMSYS
7 Building debugsys

8 The Interpreter files
8.1 debugsyslisp [?]

9 The databases
9.1 autoload dependencies oL

10 The Makefile

10
10

14

16

16
16

17
17

17

1 Notes

Notes for understanding this makefile:

IMPORTANT: all source file names in this Makefile must be lowercase This
is for cross-platform compatibility and also makes getting them into Lisp much
easier at the Makefile level.

2 The Environment

We define 4 directories for this build. The first three are the traditional IN,
which is where the source pamphlets are, MID which is where we will put the
compiled intermediates and OUT which is where we will put the binaries.

In this case the IN files are usually written in boot [?]. These will be com-
piled in a BOOTSYS image to translate from boot to Common Lisp. Since the
Common Lisp code is system independent and machine generated code the MID
directory is built in the $SPAD /int subtree. See the $SPAD /Makefile.pamphlet
[?] file for more details.

The Common Lisp code will be compiled from the MID directory into the
OUT directory. This is system-dependent, machine-generated code and belongs
in the $SPAD /obj subtree.

The dvi files will be generated from the pamphlet files in the final ship
doc/src/ directory. Since they are system independent but machine generated
and part of the final ship they will exist in $SPAD /mnt/sys/doc/src/interp.

— environment —

IN=${SRC}/interp
MID=${INT}/interp
0UT=${0BJ}/${SYS}/interp
DOC=${MNT}/${SYS}/doc/src/interp
BOOK=${MNT2}/${SYS}/doc

In order to minimize the size of the Axiom image at load time we put some of
the compiled files into a separate directory that will be autoloaded on demand.
This directory of code will be shipped with the final system and so it belongs
in the $SPAD /mnt subtree.

— environment —

AUTO=${MNT2}/${SYS}/autoload

We need a raw lisp image that we can use as a base to construct the other im-
ages. This is called LISPSYS and is system-dependent and machine-generated.
It belongs in the $SPAD /obj subtree.

— environment —

LISPSYS= ${0BJ}/${SYS}/bin/lisp

We need to extract the Numerics chunk from bookvol10.5. We do this using
the tangle function in the lisp image.
— environment —

LISPTANGLE= ${0BJ}/${SYS}/bin/lisp

Most of the interpreter is written in boot [?]. Thus we need a program to
translate boot to Common Lisp. This is called the BOOTSYS image (because
the translator is written in boot and needs to translate itself to bootstrap the
system). This image is assumed to have been built by a previous step in the
make process.

— environment —

BOOTSYS= ${0BJ}/${SYS}/bin/bootsys

Some of the Common Lisp code we compile uses macros which are assumed
to be available at compile time. The DEPSYS image is created to contain
the compile time environment and saved. We pipe compile commands into this
environment to compile from Common Lisp to machine dependent code.

— environment —

DEPSYS= ${0BJ}/${SYS}/bin/depsys

The DEP variable contains the list of files that will be loaded into DEP-
SYS. Notice that these files are loaded in interpreted form. We are not con-
cerned about the compile time performance so we can use interpreted code. We
do, however, care about the macros as these will be expanded in later compiles.
All macros are assumed to be in this list of files.

— environment —

DEP= ${MID}/vmlisp.lisp

Once we’ve compile all of the Common Lisp files we fire up a clean lisp im-
age called LOADSYS, load all of the final executable code and save it out as
SAVESYS. The SAVESYS image is copied to the ${MNT}/${SYS}/bin subdi-
rectory and becomes the axiom executable image.

— environment —

LOADSYS= ${0BJ}/${SYS}/bin/lisp
SAVESYS= ${0BJ}/${SYS}/bin/interpsys
AXIOMSYS= ${MNT}/${SYS}/bin/AXIOMsys

Occasionally we need to really get into the system internals. The best way
to do this is to run almost all of the lisp code interpreted rather than compiled
(note that cfuns.lisp and sockio.lisp still need to be loaded in compiled form as
they depend on the loader to link with lisp internals). This image is nothing
more than a load of the file src/interp/debugsys.lisp.pamphlet. If you need to
make test modifications you can add code to that file and it will show up here.

— environment —

DEBUGSYS=${0BJ}/${SYS}/bin/debugsys

These are the files that need to be compiled (in BOOTSYS), loaded into
a clean lisp image (LOADSYS) and saved as a runnable Axiom interpreter
(SAVESYS) usually named interpsys. Most of these files are translated from
boot to Common Lisp and then compiled. There are two exceptions, boot-
funs.lisp and setq.lisp. The bootfuns.lisp [?] file contains forward references
for boot code. The setq.lisp file contains constant initialization code which
gains nothing by being compiled.

The file http.lisp contains code to enable browser-based hyperdoc and graph-
ics.

— environment —

0BJS= ${0UT}/vmlisp.${0} \
${0UT}/buildom.${0} \
${0UT}/cattable.${0} \
${0UT}/cfuns.${0} \
${0UT}/clam. ${0} ${0UT}/clammed.${0} \
${0UT}/compress.${0} \
${0UT}/format.${0} \
${0UT}/g-boot . ${0} ${0UT}/g-cndata.${0} \
${0UT}/g-error.${0} \
${0UT}/g-timer.${0} ${0UT}/g-util.${0} \
${0UT} /http.${0} \
${0UT}/hypertex.${0} ${0UT}/i-analy.${0} \
${0UT}/i-code.${0} ${0UT}/i-coerce.${0} \
${0UT}/i-coerfn.${0} ${0UT}/i-eval.${0} \
${0UT}/i-funsel.${03} ${0UT}/bookvol5.${0} \
${0UT}/bookvol9.${03} ${0UT}/bookvol10.5.${0}\
${0UT}/i-intern.${0} ${0UT}/i-map.${0} \
${0UT}/i-output.${0} ${0UT}/i-resolv.${0} \
${0UT}/i-specl.${0} \
${0UT}/i-spec2.${0} \

${0UT}/i-util.${0} \

${0UT}/1isplib.${0} \
${0UT}/match.${0} \
${0UT}/msgdb. ${0} \
${0UT}/newfort.${0} \
${0UT}/nrunfast.${0} \

${0UT}/nrungo.${0} ${0UT}/nrunopt.${0} \
${0UT}/posit.${0} \
${0UT}/record. ${0} ${0UT}/regress.${0} \

${0UT}/rulesets.${0} \

${0UT}/server.${0} \

${0UT}/sfsfun-1.${03} ${0UT}/sfsfun.${0} \
${0UT}/simpbool . ${0} ${0UT}/slam.${0} \
${0UT}/sockio.${0} \

${0UT}/template.${0} ${0UT}/termrw.${0} \
${0UT}/fortcall.${0} \

${0UT}/parsing.${0} \

${0UT}/c-util.${0} ${0UT}/profile.${0} \
${0UT}/category.${0} \

${0UT}/functor.${0} \

${0UT}/info.${0} ${0UT}/iterator.${0} \
${0UT}/nruncomp.${0} \

${0UT}/htcheck.${0}

Before we save the SAVESYS image we need to run some initialization
code. These files perform initialization for various parts of the system. The
patches.lisp [?] file contains last-minute changes to various functions and con-
stants.

— environment —

INOBJS= ${0UT}/interop.${0} ${0UT}/patches.${0}

Certain functions do not need to be in the running system. If the running
image never calls the compiler or does not use the hypertex browser we will
never call the functions in these files. The code that calls these functions in the
running system will autoload the appropriate files the first time they are called.
Loading the files overwrites the autoload function call and re-calls the function.
Any subsequent calls will run the compiled code.

The OPOBJS list contains files from the old parser. The use of “old” is
something of a subtle concept as there were several generations of “old” and all
meaning of the term is lost.

— environment —

These are autloaded old parser files
0POBJS=

The OCOBJS list contains files from the old compiler. Again, “old” is
meaningless. These files should probably be autoloaded.
— environment —

tpdhere
0COBJS=

The BROBJS list contains files only used by the hypertex browser. These
files should probably be autoloaded.
— environment —

BROBJS= ${AUTO0}/br-con.${0} \
${AUTO}/topics.${0}

The NAGBROBJS list contains files used to access the Numerical Al-
gorithms Group (NAG) fortran libraries. These files should probably be au-
toloaded. Note that ${AUT0}/nag-e02a.${0} is not included in this list as it is a
subset of ${AUT0}/nag-¢02.${0}.

— environment —

NAGBROBJS= ${AUTO0}/nag-c02.${0} ${AUT0}/nag-c05.${0} \
${AUT0}/nag-c06.${0} ${AUTO}/nag-d01.${0} \
${AUT0}/nag-d02.${0} ${AUTO}/nag-d03.${0} \
${AUT0}/nag-e01.${0} ${AUTO}/nag-¢02.${0} \
${AUT0}/nag-e04.${0} ${AUTO}/nag-£01.${0} \
${AUTO}/nag-£02.${0} ${AUTO}/nag-£04.${0} \
${AUT0}/nag-£07.${0> ${AUTO}/nag-s.${0}

The ASCOMP list contains files used by the Aldor [?] compiler. These files
should probably be autoloaded.
— environment —

ASCOMP= ${0UT}/hashcode.${0}

Axiom versions are given as a string of the form: ”Sunday September 21,
2003 at 20:38:05 7 which describe the day, date, and time of the build. This is
used for reporting bugs. It is only partially useful in identifying which source
code was used. Ideally we could create a tar file of all of the date/time stamps
of all of the source files and use the MD5 hash of that file as the version stamp.
Ultimately though, this would be chasing the elusive ”perfect information” idea.

A new variable boot: : ¥build-version* is set and used by the yearweek func-
tion to display the version number of the Axiom build. This information is set
by hand in the top level Makefile.

— environment —

TIMESTAMP=${MNT}/${SYS}/timestamp

YEARWEEK=(progn (setq timestamp "${TIMESTAMP}") \
(setq boot::*build-version* "${VERSION}") \
(yearweek))

The .PRECIOUS setting will keep make from deleting these images if the
build is stopped. Since once they are built they are likely to be useable we
don’t need to redo the work if they exist.

— environment —

.PRECIOUS: ${BOOTSYS}
.PRECIOUS: ${DEPSYS}

.PRECIOUS: ${SAVESYS}
.PRECIOUS: ${AXIOMSYS}

3 Proclaim optimization

GCL, and possibly other common lisps, can generate much better code if the
function argument types and return values are proclaimed.

In theory what we should do is scan all of the functions in the system and
create a file of proclaim definitions. These proclaim definitions should be loaded
into the image before we do any compiles so they can allow the compiler to
optimize function calling.

GCL has an approximation to this scanning which we use here.

The first step is to build a version of GCL that includes gcl_collectfn. This
file contains code that enhances the lisp compiler and creates a hash table of
structs. Each struct in the hash table describes information that about the
types of the function being compiled and the types of its arguments. At the end
of the compile-file this hash table is written out to a ”.fn” file.

The second step is to build axiom images (depsys, interpsys, AXIOMsys)
which contain the gcl_collectfn code.

The third step is to build the system. This generates a .fn file for each lisp
file that gets compiled.

The fourth step is to build the proclaims.lisp files. There is one proclaims.lisp
file for boot (boot-proclaims.lisp), interp (interp-proclaims.lisp), and algebra
(algebra-proclaims.lisp).

To build the proclaims file (e.g. for interp) we:

(a) cd to obj/linux/interp

(b) (yourpath)/axiom/obj/linux/bin/lisp
(c) (load "sys-pkg.lsp")

(d) (mapcar #’load (directory "*.fn"))
(e) (with-open-file

(out "interp-proclaims.lisp" :direction :output)
(compiler: :make-proclaims out))

Note that step (c) is only used for interp, not for boot.
The fifth step is to copy the newly constructed proclaims file back into the
src/interp diretory (or boot, algebra).
In order for this information to be used during compiles we define
— environment —

PROCLAIMS=(progn (load "${0UT}/sys-pkg.lsp") \
(load "${IN}/interp-proclaims.lisp"))

4 The warm.data file

This is a file of commands that will be loaded into interpsys at the last minute.

It execute functions that will likely be used in a running system so all of the

required routines will be in the lisp image thus minimizing their startup time.
— warm.data.stanza —

${INT}/algebra/warm.data:
@ echo si001 building warm.data
@ ${BO0KS}/tanglec ${IN}/Makefile.pamphlet warm.data >${INT}/algebra/warm.data

— warm.data —

(in-package ’boot)

(setq |$topicHash| (make-hash-table))

(setf (gethash ’|basic| |$topicHash|) 2)

(setf (gethash ’|algebraic| |$topicHash|) 4)
(setf (gethash ’|miscellaneous| |$topicHash|) 13)
(setf (gethash ’|extraction| |$topicHashl|) 6)
(setf (gethash ’|conversion| |$topicHash|) 7)
(setf (gethash ’|hidden| |$topicHash|) 3)

(setf (gethash ’|extended| |$topicHash|) 1)

(setf (gethash ’|destructive| |$topicHashl|) 5)
(setf (gethash ’|transformation| |$topicHashl|) 10)
(setf (gethash ’|hyperbolic| |$topicHashl|) 12)
(setf (gethash ’|construct| |$topicHash|) 9)
(setf (gethash ’|predicatel| |$topicHashl|) 8)
(setf (gethash ’|trignometric| |$topicHash|) 11)

5 Building DEPSYS

The depsys image proceeds all else. it is the compile-time environment for all
interpreter code.

The “:oldboot” symbol is pushed on the features list because there is a
function in util.lisp that emulates the new boot parser command BOOTTOCL.
since we eventually plan to move to the new boot parser this function (and the
push) should disappear.

The load of postpar and parse (without extensions) allows the .${LISP}
form to be loaded in a virgin system. However, if depsys is recreated then the
compiled form will get loaded.

This file contained the only mention of the AKCLDIR variable which gives
the path to the version of AKCL. Now that the system is running on GCL
this variable has been renamed to GCLDIR. This cannot be eliminated entirely
because the system uses this variable to look up a file called collectfn.lsp which
is part of the GCL distribution. This file lookup is in conditional lisp code so
other lisps will not see the file load. The collectfn.lsp code is used by GCL to
generate the “.fn” files which are used to optimize function calling.

5.1 save depsys image

Once the appropriate commands are in the ${0UT}/makedep.lisp file we can load
the file into a fresh image and save it. At least that’s how it used to work. In
freebsd we cannot do this so we have to use a much more complicated procedure.
This code used to read:

\begin{chunk}{save depsys image}
@ (cd ${MNT}/${SYS}/bin ; \
echo ’(progn (load "${0UT}/makedep.lisp")’ \
’ (spad-save "${DEPSYS}"))’ | ${LISPSYS})
\end{chunk}

Now game is much more difficult.

> (progn \

si::*collect-binary-modules* instructs GCL to build a list of binary object
modules loaded into the current session with (load ...) The list will be stored in
si::*binary-modulesx*.

(setq si::*collect-binary-modules* t) \
(load "${0UT}/makedep.lisp") \

compiler: :1link is a lisp interface to the “ld” C-based system linker. The first
argumet is a list of .o binary object modules to link into a fresh gcl image. The
second argument is the name of the new output image. The third argument
is a string containing an initialization command to run in the new image to

10

reinitialize the heap. The fourth argument is a list of external C libraries,
either static or dynamic, that one wishes to link into the fresh image. The
last argument is a flag which indicates whether GCL should initialize all of the
freshly linked in new lisp modules, or whether it should transparently redirect
load calls in the new image to initialization calls for the already linked in module.

Some lisp systems, such as acl2, have a complex heap initialization, in which
load calls must be interspersed with other form evaluation comprising the logic
of the heap construction. Others, such as maxima, have no such complex ini-
tialization sequence.

(compiler::link \

si::*binary-modules* here has the list of compiled lisp binary module .o files
loaded by makedep.lsp above.

(remove-duplicates si::*binary-modules* \
:test (quote equal)) \

The name of the output image.

"$ (DEPSYS)" \

This will be run in the newly linked sub-image.
(format nil "\

Collect loaded binary modules again to make sure that there are none, as
all should be already linked in via 1d. For error checking purposes.

(setq si::*collect-binary-modules* t) \

We need to find gcl_collectfn.lsp, so set the *load-path*, and make sure
the source, not the binary, form is loaded here, as we’re only using this entire
sequence on machines which cannot load binary object modules and preserve
them in saved images.

(let ((si::*load-path* (cons ~S si::*load-path*))\
(si::*load-types* ~S))\

Turn on function analyzation and autoload thereby gcl_collectfn.lsp.
(compiler::emit-fn t))\

Load the heap creation sequence again in the fresh new image, this time
transparently redirecting all calls to load of binary modules invoked thereby
into initialization calls for the already linkned in module.

Load has code in it to recognize when a module is already linked in, and
to forgo in this case the actual load and replace with a mere initialization call
instead.

(load \"$(0OUT)/makedep.lisp\")\
(gbc t)\

11

It is an error to load a binary module. Calling load will not reload them
but only run initialization. Throw an error if we’ve actually loaded any binary
modules.

(when si::*binary-modules* \
(error si::*binary-modules*))\

Unset the binary module collection flags.

(setq si::collect-binary-modules* nil \xo
si::*binary-modules* nil)\
(gbc)\

We need to forget the build time system paths per Camm Maguire’s email
on July 14th, 2011

(si::reset-sys-paths)

Turn on SGC (Stratified Garbage Collection) in the final image. This is a
optional gbc algorithm which is suitable for images which will not grow much
further. It marks a large fraction of the heap read-only, eliminating such pages
from the time-consuming gbc processing. When writes are actually made to
such pages, a segfault is triggered which is handled by a function which remarks
the pages read-write and continues.

(when (fboundp (quote si::sgc-on)) (si::sgc-on t))\

This is a flag which instructs the GCL compiler to make unique initialzation
function C names. This is necessary when using Id, as all function names must
be unique.

(setq compiler::*default-system—p* t)\
si::*system-directory™® goes into the *load-path*, and .Isp in the *load-types*.
" si::*system-directory* (quote (list ".lsp")))\
No C libraries to link in here.
"\

Do not run the initialization code for the newly linked in lisp modules “by
hand”, but rather rely on the transparent load redirection described above to
initialize at the proper moment in the heap initialization sequence.

nil))’ | $(LISPSYS))
The save depsys image was supposed to read:

@ (cd ${0BJ}/${SYS}/bin ; \
echo ’(progn’ \
’(setq si::*collect-binary-modules* t)’ \
’(load "${0UT}/makedep.lisp")’ \

12

>(compiler::1link’ \
’ (remove-duplicates si::*binary-modulesx*’ \
’:test (quote equal))’ \
»"$ (DEPSYS) "> \
>(format nil’ \
’"(setq si::*collect-binary-modules* t)’ \
’(let ((si::*load-path* (cons ~S si::*load-path*))’ \
?(si::xload-types* ~S))’ \
>(compiler::emit-fn t))’ \
’>(load \"$(OUT)/makedep.lisp\")’ \
>(gbc t)’ \
’(when si::*binary-modules*’ \
> (error si::*binary-modulesx))’ \
’(setq si::collect-binary-modules* nil’ \
’si::*binary-modules* nil)’ \
’(gbe t)’ \
’(si::reset-sys-paths)’ \
’(when (fboundp (quote si::sgc-on)) (si::sgc-on t))’ \
’(setq compiler::xdefault-system-p* t)"’ \
’si::*system-directory* (quote (list ".1lsp")))’\
Inmn \
’nil))’ | $(LISPSYS))

This scheme does not work. It fails during loading with multiple messages
of the form:

/home/axiom33/0bj/linux/interp/parse.o(.text+0x5660) :
In function ‘init_code’:
: multiple definition of ‘init_code’
/home/axiom33/0bj/linux/interp/postpar.o(.text+0x4e78):
first defined here

— depsys —

${DEPSYS}: ${DEP} ${0UT}/sys-pkg.${LISP} ${0UT}/nocompil.${LISP} \
${0UT}/bookvol5. ${LISP} ${0UT}/bookvol9.${LISP} \
${0UT}/util.${LISP} \
${0UT}/parsing.${LISP} \
${0UT}/g-boot.lisp ${0UT}/c-util.lisp \
${0UT}/g-util.lisp \
${0UT}/clam.lisp \
${0UT}/slam.lisp ${LOADSYS}
echo si002 making ${DEPSYS}
echo ’${PROCLAIMS}’ > ${0UT}/makedep.lisp
echo ’(push :oldboot *featuresx)’ >>${0UT}/makedep.lisp
echo ’(load "${0UT}/nocompil")’ >> ${0UT}/makedep.lisp
echo ’(load "${0UT}/bookvol5")’ >> ${0UT}/makedep.lisp
echo ’(load "${0UT}/bookvol9")’ >> ${0UT}/makedep.lisp
echo ’(load "${0UT}/util")’ >> ${0UT}/makedep.lisp
echo ’(in-package "BOOT")’ >> ${0UT}/makedep.lisp

©@ 0 0 © 0 0 B O

13

@ echo ’(build-depsys (quote ($(patsubst %, "%", ${DEP})))’ \
>"${SPAD}" "${GCLDIR}" "${SRC}" "${INT}" "${0BJ}" "${MNT}"’> \
»"${sYs}")’> >> ${0UT}/makedep.lisp

@ echo ’(unless (probe-file "${0OUT}/parsing.${0}")’ \

’(compile-file "${0UT}/parsing.${LISP}"’ \
’:output-file "${0UT}/parsing.${0}"))’ >> ${0UT}/makedep.lisp

@ echo ’(load "${0UT}/parsing")’ >> ${0UT}/makedep.lisp

@ echo ’(unless (probe-file "${0UT}/clam.${0}")’ \

’(compile-file "${0UT}/clam.lisp"’ \
?:output-file "${0UT}/clam.${0}"))’ >> ${0UT}/makedep.lisp

@ echo ’(load "${0UT}/clam")’ >> ${0UT}/makedep.lisp

@ echo ’(unless (probe-file "${0UT}/slam.${0}")’> \
> (compile-file "${0UT}/slam.lisp"’ \

’:output-file "${0UT}/slam.${0}"))’ >> ${0UT}/makedep.lisp
@ echo ’(load "${0UT}/slam")’ >> ${0UT}/makedep.lisp
@ echo ’(unless (probe-file "${0UT}/g-boot.${0}")’ \
’(compile-file "${0UT}/g-boot.lisp"’ \
’:output-file "${0UT}/g-boot.${0}"))’> >> ${0UT}/makedep.lisp
@ echo ’(load "${0UT}/g-boot")’ >> ${0UT}/makedep.lisp
@ echo ’(unless (probe-file "${0OUT}/c-util.${0}")’ \
’(compile-file "${0UT}/c-util.lisp"’ \
’:output-file "${0UT}/c-util.${0}"))’> >> ${0UT}/makedep.lisp

@ echo ’(load "${0UT}/c-util")’ >> ${0UT}/makedep.lisp

@ echo ’(unless (probe-file "${0UT}/g-util.${0}")’ \
> (compile-file "${0UT}/g-util.lisp"’ \

’:output-file "${0UT}/g-util.${0}"))’> >> ${0UT}/makedep.lisp

@ echo ’(load "${0UT}/g-util")’ >> ${0UT}/makedep.lisp
\getchunk{save depsys image}
@ echo si003 ${DEPSYS} created

6 Building SAVESYS and AXIOMSYS

GCL likes to tell you when it has replaced a function call by a tail-recursive call.
This happens when the last form in a function is a call to the same function. In
general, we don’t care so we set compiler::*suppress-compiler-notes* to true in
order to reduce the noise.

— savesys —

${SAVESYS}: ${DEPSYS} ${0BJS} ${0UT}/bookvol5.${0} ${0UT}/util.${0} \
${0UT}/nocompil.${LISP} ${0UT}/sys-pkg.${LISP} \
${0UTINTERP} ${BROBJS} \
${0UT}/database.date ${INOBJS} ${ASCOMP} \
${NAGBROBJS} \
${LOADSYS} \
${SRC}/doc/msgs/s2-us.msgs \

14

@ 0 © © 0 0 OO H O OO B O B B B b © B ©

@ @ * © © © © ¥ #* ©

@

${INT}/algebra/warm.data
echo si004 invoking make in ‘pwd‘ with parms:
echo SYS= ${sys}
echo LSP= ${LSP}
echo PART= ${PART}
echo SPAD= ${SPAD}
echo SRC= ${SRC}
echo INT= ${INT}
echo MID= ${MID}
echo OUT= ${0UT}
echo 0BJ= ${0BJ}
echo MNT= ${MNT}
echo 0=${0} LISP=${LISP} BYE=${BYE}
cp -p ${0UT}/*.fn ${MID}
cp -p ${SRC}/doc/msgs/s2-us.msgs ${SPAD}/doc/msgs
@ cp -p ${SRC}/doc/msgs/co-eng.msgs ${SPAD}/doc/msgs
echo ’${PROCLAIMS}’ > ${0UT}/makeint.lisp
echo ’(load "${0UT}/nocompil")’ >> ${0UT}/makeint.lisp
echo ’(load "${0UT}/bookvol5")’ >> ${0UT}/makeint.lisp
echo ’(load "${0UT}/util")’ >> ${0UT}/makeint.lisp
echo ’(in-package "BOOT")’ >> ${0UT}/makeint.lisp
touch ${TIMESTAMP}
echo ’${YEARWEEK}’ >> ${0UT}/makeint.lisp
echo ’(build-interpsys (append’ \
’(quote ($(patsubst %, "%", ${0BISH))’ \
’(quote ($(patsubst %, "%", ${ASCOMP})))’ \
’(quote ($(patsubst %, "%", ${INOBJS}))))’> \
’(quote ($(patsubst %, "%", ${BROBJS})))’ \
’(quote ($(patsubst %, "%", ${NAGBROBJS})))’ \
’"${SPAD}" "${LSP}" "${SRC}" "${INT}"> \
>ug{0BJ}" "${MNT}" "${SYS}")’ >> ${0UT}/makeint.lisp
echo ’(in-package "SCRATCHPAD-COMPILER")’ >> ${0UT}/makeint.lisp
@ echo ’(|shoeInternFile| "${MNT}/${SYS}/doc/msgs/co-eng.msgs")’ \
>> ${0UT}/makeint.lisp
echo ’(boot::set-restart-hook)’ >> ${0UT}/makeint.lisp
echo ’(in-package "BOOT")’ >> ${0UT}/makeint.lisp
echo ’(load "${INT}/algebra/warm.data")’ >> ${0UT}/makeint.lisp
echo ’(|clearClams|)’ >> ${0UT}/makeint.lisp
@ echo ’#+:akcl (si::multiply-bignum-stack 10)’ >> ${0UT}/makeint.lisp
echo ’#+:akcl (setq compiler::*suppress-compiler-notes* t)’ \
>> ${0UT}/makeint.lisp
echo ’#+:akcl (si::gbc-time 0)’ >> ${0UT}/makeint.lisp
echo ’#+:akcl (setq si::*system-directory* "${SPAD}/bin/")’ \
>> ${0UT}/makeint.lisp
(cd ${0BJ}/${SYS}/bin ; \
echo ’(progn (gbc t) (load "${0UT}/makeint.lisp")’ \
’(gbc t) (user::spad-save "${SAVESYS}"))’ | ${LISPSYS})
echo si005 ${SAVESYS} created
cp ${SAVESYS} ${AXIOMSYS}
echo si006 ${AXIOMSYS} created

15

7 Building debugsys

Note that we assume you’ve already built interpsys so all of the files are known
to exist and be up to date. We don’t list any of the preconditions here.
— debugsys —

${DEBUGSYS}: ${MID}/debugsys.lisp
@ echo si007 building debugsys
@ (cd ${0BJ}/${SYS}/bin ; \
echo ’(progn (gbc t) (load "${MID}/debugsys.lisp")’ \
’ (user: :spad-save "${DEBUGSYS}"))’ | ${LISPSYS})
@ echo si008 ${DEBUGSYS} created

8 The Interpreter files

8.1 debugsys.lisp [?]

The debugsys.lisp file is used to create a debugsys runnable image. This
image contains almost all of the lisp code that make up the axiom interpreter in
lisp form. It is useful for deep system debugging but otherwise worthless. This
file is certain to drift over time as changes are made elsewhere to add or remove
files. It is assumed that you know what you are doing if you change this file or
use debugsys.

This file is basically the same as the one created during the build of interpsys.
See the echo lines in the SAVESYS block above. These are echoed into a
temporary file which gets loaded into the lisp image. We simply captured that
temporary file, replaced the .o files with .lisp files (or .Isp or .clisp) and saved it
here.

— debugsys.lisp (MID from IN) —

${MID}/debugsys.lisp: ${IN}/debugsys.lisp.pamphlet
@ echo siO11 making ${MID}/debugsys.lisp from ${IN}/debugsys.lisp.pamphlet
@ (cd ${MID} ; \
echo ’(tangle "${IN}/debugsys.lisp.pamphlet" "x" "debugsys.lisp")’ \
| ${0BJ}/${SYS}/bin/lisp 1>/dev/null 2>/dev/null)

16

9 The databases

9.1 autoload dependencies

If you are adding a file which is to be autoloaded the following step information
is useful. There are 2 cases:

1. adding files to currently autoloaded parts
(as of 2/92: browser old parser and old compiler)

2. adding new files

e case 1:

(a) you have to add the file to the list of files currently there (e.g. see
BROBJS above)

(b) add an autolaod rule (e.g. AUTO/parsing.O: OUT /parsing.O)

(c) edit util.lisp to add the ’external’ function (those that should trigger
the autoload

3. case 2:
build-interpsys (in util.lisp) needs an extra argument for the new autoload
things and several functions in util.lisp need hacking.

database.date is a marker file used to force a rebuild of interpsys if the database
is rebuilt (src/algebra/Makefile).
— databases —

${0UT}/database.date:
@ echo 617 the database was updated...remaking interpsys
@ touch ${0UT}/database.date

10 The Makefile

%

\getchunk{environment}

all: announce ${SAVESYS} # ${DEBUGSYS}
@echo 618 finished ${IN}

announce:
@ echo
@ echo src/interp BUILDING INTERPRETER FILES
@ echo

17

clean:
@echo 619 cleaning ${SRC}/interp

\getchunk{savesys}
\getchunk{depsys}
\getchunk{debugsys}
\getchunk{databases}

\getchunk{debugsys.lisp (MID from IN)}
\getchunk{warm.data.stanza}

${MID}/bookvol5.${LISP}: ${IN}/bookvol5s.pamphlet
@ echo si125 making ${MID}/bookvol5.${LISP} from ${IN}/bookvol5.pamphlet
@ (cd ${MID} ; \
echo ’(tangle "${IN}/bookvol5.pamphlet" "Interpreter" "bookvol5.${LISP}")’> \
| ${0BJ}/${SYS}/bin/lisp) 1>/dev/null 2>/dev/null

${MID}/bookvol9.${LISP}: ${IN}/bookvol9.pamphlet
@ echo si128 making ${MID}/bookvol9.${LISP} from ${IN}/bookvol9.pamphlet
@ (cd ${MID} ; \
echo ’(tangle "${IN}/bookvol9.pamphlet" "Compiler" "bookvol9.${LISP}")’ \
| ${0BJ}/${SYS}/bin/lisp) 1>/dev/null 2>/dev/null

${MID}/bookvol10.5.${LISP}: ${IN}/bookvoll0.5.pamphlet
@ echo si131 making ${MID}/bookvol10.5.${LISP} from ${IN}/bookvoll10.5.pamphlet
@ (cd ${MID} ; \
echo ’(tangle "${IN}/bookvol10.5.pamphlet" "Numerics" "bookvol10.5.${LISP}")’\
| ${LISPTANGLE}) 1>/dev/null 2>/dev/null

${MID}/http.lisp: ${IN}/http.lisp
@ echo si110 making ${MID}/http.lisp from ${IN}/http.lisp
Q(cp ${IN}/http.lisp ${MID}/http.lisp)

${0UT}/%.${LISP}: ${MID}/%.${LISP}
@ echo siOUTfromMID2 making ${0UT}/$x.${LISP} from ${MID}/$*.${LISP}
@cp ${MID}/$*.${LISP} ${0UT}/$*.${LISP}

${0UT}/%.${LISP}: ${MID}/%.lisp
@ echo siOUTfromMID1 making ${0UT}/$*.lisp from ${MID}/$*.lisp
@cp ${MID}/$*.1lisp ${OUT}/$x*.${LISP}

${0UT}/%.1isp: ${IN}/%.lisp.pamphlet
@ echo siOUTfromIN making ${0UT}/$*.lisp from ${IN}/$*.lisp.pamphlet
@ rm -f ${0UT}/$*.${0}
@(cd ${0UT} ; \
echo ’(tangle "${IN}/$*.lisp.pamphlet" "*" "$*.lisp")’ \
| ${0BJ}/${SYS}/bin/lisp) 1>/dev/null

${0UT}/%.0: ${MID}/%.1lisp

18

@ echo siOUTfromMID making ${0UT}/$*.o from ${MID}/$*.lisp
@ if [-z "${NOISE}" 1 ; then \
(cd ${MID} ; \
echo ’(progn (compile-file "$x*.lisp"’ \
?:output-file "${0UT}/$*.0") (${BYE}))’ | ${DEPSYS}) ; \
else \
(cd ${MID} ; \
echo ’(progn (compile-file "$*.lisp"’ \
> :output-file "${0UT}/$I.o") (${BYE}))’ | ${DEPSYS}) \
1>/dev/null 2>/dev/null ; \
fi

${MID}/%.1lisp: ${IN}/%.lisp.pamphlet
@ echo siMIDfromIN making ${MID}/$*.lisp from ${IN}/$*.lisp.pamphlet
@ (cd ${MID} ; \
(echo ’(tangle "${IN}/$*.lisp.pamphlet" "*" "$x.1lisp")’ \
| ${0BJ}/${SYS}/bin/lisp 1>/dev/null))

${AUTO}/%.${0}: ${0UT}/%.${0}
@ echo siAUTOfromQUT making ${AUTO}/$*.${0} from ${0UT}/$x.${0}
@ cp ${0UT}/$=.${0} ${AUTO}

${ouT}/%.${0}: ${MID}/%.${LISP}
@ echo si123 making ${0UT}/$*.${0} from ${MID}/$=*.${LISP}
@ if [-z "${NOISE}" 1 ; then \
(cd ${MID} ; \
echo ’(progn (compile-file "${MID}/$x*.${LISP}"’> \
> :output-file "${OUT}/$x.${0}") (${BYE}))’ | ${DEPSYS}) ; \
else \
(cd ${MID} ; \
echo ’(progn (compile-file "${MID}/$x.${LISP}"’> \
> :output-file "${0UT}/$x.${0}") (${BYE}))’ | ${DEPSYS}) \
1>/dev/null 2>/dev/null ; \
fi

19

References

20

