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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

This document is a complete “re-implementation” of the original Axiom book by Jenks and
Sutor. Virtually every line has been reviewed and rewritten into the new Axiom pamphlet
format. Changes were made to reflect the new Axiom system. Additional material was added
and some previous examples were rewritten. This is intended to be a “living” document with
material referenced or gathered automatically from other parts of the system documentation.
Future plans include adding active examples (moving graphics, in-line command prompts)
using Active-DVI.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I'm looking forward to future milestones.

With that in mind I've introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
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Foreword

You are holding in your hands an unusual book. Winston Churchill once said that the
empires of the future will be empires of the mind. This book might hold an electronic key
to such an empire.

When computers were young and slow, the emerging computer science developed dreams
of Artificial Intelligence and Automatic Theorem Proving in which theorems can be proved
by machines instead of mathematicians. Now, when computer hardware has matured and
become cheaper and faster, there is not too much talk of putting the burden of formulating
and proving theorems on the computer’s shoulders. Moreover, even in those cases when com-
puter programs do prove theorems, or establish counter-examples (for example, the solution
of the four color problem, the non-existence of projective planes of order 10, the disproof of
the Mertens conjecture), humans carry most of the burden in the form of programming and
verification.

It is the language of computer programming that has turned out to be the crucial instrument
of productivity in the evolution of scientific computing. The original Artificial Intelligence ef-
forts gave birth to the first symbolic manipulation systems based on LISP. The first complete
symbolic manipulation or, as they are called now, computer algebra packages tried to imbed
the development programming and execution of mathematical problems into a framework
of familiar symbolic notations, operations and conventions. In the third decade of symbolic
computations, a couple of these early systems—REDUCE and MACSYMA—still hold their
own among faithful users.

Axiom was born in the mid-70’s as a system called Scratchpad developed by IBM researchers.
Scratchpad/Axiom was born big—its original platform was an IBM mainframe 3081, and
later a 3090. The system was growing and learning during the decade of the 80’s, and its
development and progress influenced the field of computer algebra. During this period, the
first commercially available computer algebra packages for mini and and microcomputers
made their debut. By now, our readers are aware of Mathematica, Maple, Derive, and
Macsyma. These systems (as well as a few special purpose computer algebra packages in
academia) emphasize ease of operation and standard scientific conventions, and come with
a prepared set of mathematical solutions for typical tasks confronting an applied scientist
or an engineer. These features brought a recognition of the enormous benefits of computer
algebra to the widest circles of scientists and engineers.

The Scratchpad system took its time to blossom into the beautiful Axiom product. There is
no rival to this powerful environment in its scope and, most importantly, in its structure and
organization. Axiom contains the basis for any comprehensive and elaborate mathematical
development. It gives the user all Foundation and Algebra instruments necessary to develop
a computer realization of sophisticated mathematical objects in exactly the way a mathe-
matician would do it. Axiom is also the basis of a complete scientific cyberspace—it provides
an environment for mathematical objects used in scientific computation, and the means of
controlling and communicating between these objects. Knowledge of only a few Axiom lan-
guage features and operating principles is all that is required to make impressive progress
in a given domain of interest. The system is powerful. It is not an interactive interpretive
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environment operating only in response to one line commands—it is a complete language
with rich syntax and a full compiler. Mathematics can be developed and explored with ease
by the user of Axiom. In fact, during Axiom’s growth cycle, many detailed mathematical
domains were constructed. Some of them are a part of Axiom’s core and are described in
this book. For a bird’s eye view of the algebra hierarchy of Axiom, glance inside the book
cover.

The crucial strength of Axiom lies in its excellent structural features and unlimited expandability—
it is open, modular system designed to support an ever growing number of facilities with
minimal increase in structural complexity. Its design also supports the integration of other
computation tools such as numerical software libraries written in FORTRAN and C. While
Axiom is already a very powerful system, the prospect of scientists using the system to
develop their own fields of Science is truly exciting—the day is still young for Axiom.

Over the last several years Scratchpad/Axiom has scored many successes in theoretical math-
ematics, mathematical physics, combinatorics, digital signal processing, cryptography and
parallel processing. We have to confess that we enjoyed using Scratchpad/Axiom. It pro-
vided us with an excellent environment for our research, and allowed us to solve problems
intractable on other systems. We were able to prove new diophantine results for ; estab-
lish the Grothendieck conjecture for certain classes of linear differential equations; study
the arithmetic properties of the uniformization of hyperelliptic and other algebraic curves;
construct new factorization algorithms based on formal groups; within Scratchpad/Axiom
we were able to obtain new identities needed for quantum field theory (elliptic genus formula
and double scaling limit for quantum gravity), and classify period relations for CM varieties
in terms of hypergeometric series.

The Axiom system is now supported and distributed by NAG, the group that is well known
for its high quality software products for numerical and statistical computations. The devel-
opment of Axiom in IBM was conducted at IBM T.J. Watson Research Center at Yorktown,
New York by a symbolic computation group headed by Richard D. Jenks. Shmuel Winograd
of IBM was instrumental in the progress of symbolic research at IBM.

This book opens the wonderful world of Axiom, guiding the reader and user through Ax-
iom’s definitions, rules, applications and interfaces. A variety of fully developed areas of
mathematics are presented as packages, and the user is well advised to take advantage of the
sophisticated realization of familiar mathematics. The Axiom book is easy to read and the
Axiom system is easy to use. It possesses all the features required of a modern computer
environment (for example, windowing, integration of operating system features, and interac-
tive graphics). Axiom comes with a detailed hypertext interface (HyperDoc), an elaborate
browser, and complete on-line documentation. The HyperDoc allows novices to solve their
problems in a straightforward way, by providing menus for step-by-step interactive entry.

The appearance of Axiom in the scientific market moves symbolic computing into a higher
plane, where scientists can formulate their statements in their own language and receive com-
puter assistance in their proofs. Axiom’s performance on workstations is truly impressive,
and users of Axiom will get more from them than we, the early users, got from mainframes.
Axiom provides a powerful scientific environment for easy construction of mathematical tools
and algorithms; it is a symbolic manipulation system, and a high performance numerical sys-
tem, with full graphics capabilities. We expect every (computer) power hungry scientist will
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want to take full advantage of Axiom.

David V. Chudnovsky Gregory V. Chudnovsky
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Richard Dimick Jenks
Axiom Developer and Computer Algebra Pioneer

Richard D. Jenks was born on November 16, 1937 in Dixon, Illinois,
where he grew up. During his childhood he learned to play the organ
and sang in the church choir thereby developing a life-long passion
for music.

He received his PhD in mathematics from the University of Illinois at
Urbana-Champaign in 1966. The title of his dissertation was
‘‘Quadratic Differential Systems for Mathematical Models" and was
written under the supervision of Donald Gilles. After completing his
PhD, he was a post-doctoral fellow at Brookhaven National Laboratory
on Long Island. In 1968 he joined IBM Research where he worked until
his retirement in 2002.

At IBM he was a principal architect of the Scratchpad system, one of
the earliest computer algebra systems(1971). Dick always believed that
natural user interfaces were essential and developed a user-friendly
rule-based system for Scratchpad. Although this rule-based approach
was easy to use, as algorithms for computer algebra became more
complicated, he began to understand that an abstract data type
approach would give sophisticated algorithm development considerably
more leverage. In 1977 he began the Axiom development (originally
called Scratchpad II) with the design of MODLISP, a merger of Lisp
with types (modes). In 1980, with the help of many others, he
completed an initial prototype design based on categories and domains
that were intended to be natural for mathematically sophisticated
users.

During this period many researchers in computer algebra visited IBM
Research in Yorktown Heights and contributed to the development of the
Axiom system. All this activity made the computer algebra group at IBM
one of the leading centers for research in this area and Dick was
always there to organize the visits and provide a stimulating and
pleasant working environment for everyone. He had a good perspective
on the most important research directions and worked to attract
world-renowned experts to visit and interact with his group. He was an
ideal manager for whom to work, one who always put the project and the
needs of the group members first. It was a joy to work in such a
vibrant and stimulating environment.

After many years of development, a decision was made to rename
Scratchpad II to Axiom and to release it as a product. Dick and Robert
Sutor were the primary authors of the book Axiom: The Scientific
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Computation System. In the foreword of the book, written by David and
Gregory Chudnovsky, it is stated that ‘‘The Scratchpad system took its
time to blossom into the beautiful Axiom product. There is no rival to
this powerful environment in its scope and, most importantly, in its
structure and organization.’’ Axiom was recently made available as
free software. See http://savannah.nongnu.org/projects/axiom.

Dick was active in service to the computer algebra community as

well. Here are some highlights. He served as Chair of ACM SIGSAM
(1979-81) and Conference Co-chair (with J. A. van Hulzen) of EUROSAM
’84, a precursor of the ISSAC meetings. Dick also had a long period of
service on the editorial board of the Journal of Symbolic

Computation. At ISSAC ’95 in Montreal, Dick was elected to the initial
ISSAC Steering Committee and was elected as the second Chair of the
Committee in 1997. He, along with David Chudnovsky, organized the
highly successful meetings on Computers and Mathematics that were held
at Stanford in 1986 and MIT in 1989.

Dick had many interests outside of his professional pursuits including
reading, travel, physical fitness, and especially music. Dick was an
accomplished pianist, organist, and vocalist. At one point he was the
organist and choirmaster of the Church of the Holy Communion in
Mahopac, NY. In the 1980s and 1990s, he sang in choral groups under
the direction of Dr. Dennis Keene that performed at Lincoln Center in
New York city.

Especially important to him was his family: his eldest son Doug and
his wife Patricia, his son Daniel and his wife Mercedes, a daughter
Susan, his brother Albert and his wife Barbara, his sister Diane
Alabaster and her husband Harold, his grandchildren Douglas, Valerie,
Ryan, and Daniel Richard, and step-granddaughter Danielle. His
longtime companion, Barbara Gatje, shared his love for music,
traveling, Point 0’Woods, and life in general.

On December 30, 2003, Dick Jenks died at the age of 66, after an
extended and courageous battle with multiple system

atrophy. Personally, Dick was warm, generous, and outgoing with many
friends. He will be missed for his technical accomplishments, his
artist talents, and most of all for his positive, gentle, charming
spirit.

Prepared by Bob Caviness, Barry Trager, and Patrizia Gianni with
contributions from Barbara Gatje, James H. Griesmer, Tony Hearn,
Manuel Bronstein, and Erich Kaltofen.
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Introduction to Axiom

0.1 Introduction to Axiom

Welcome to the world of Axiom. We call Axiom a scientific computation system: a self-
contained toolbox designed to meet your scientific programming needs, from symbolics, to
numerics, to graphics.

This introduction is a quick overview of what Axiom offers.

0.1.1 Symbolic Computation

Axiom provides a wide range of simple commands for symbolic mathematical problem solv-
ing. Do you need to solve an equation, to expand a series, or to obtain an integral? If so,

just ask Axiom to do it.
1
/ 8 oN1/3y dx
(23 (a+bx)™"”)

we would enter this into Axiom as:

Given

integrate(1/(x**3 * (a+b*x)**(1/3)),x)

which would give the result:

-2 % 22 \/glog(% \B/bx+a2+\3/52 \3/bx+a+a>+

4 b% 22 \/glog(\?/&2 \3/bx+a—a)+

3 2 3/
12b2x2arctan<2\/§\/6 bx+a+a\/§>+

3a

(12bx—9a) \/5\3/5\3/bx+a2
18 a2 22 /3 ¥a

Type: Union(Expression Integer,...)

Axiom provides state-of-the-art algebraic machinery to handle your most advanced symbolic
problems. For example, Axiom’s integrator gives you the answer when an answer exists.
If one does not, it provides a proof that there is no answer. Integration is just one of a
multitude of symbolic operations that Axiom provides.
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0.1.2 Numeric Computation

Axiom has a numerical library that includes operations for linear algebra, solution of equa-
tions, and special functions. For many of these operations, you can select any number of
floating point digits to be carried out in the computation.

Solve %9 — 492* + 9 to 49 digits of accuracy. First we need to change the default output
length of numbers:

digits (49)

and then we execute the command:
solve (x**x49-49%x*x*x4+9 = 0,1.e-49)

[x = —0.6546536706904271136718122105095984761851224331556,
z = 1.086921395653859508493939035954893289009213388763,
x = 0.6546536707255271739694686066136764835361487607661]

Type: List Equation Polynomial Float

The output of a computation can be converted to FORTRAN to be used in a later numerical
computation. Besides floating point numbers, Axiom provides literally dozens of kinds of
numbers to compute with. These range from various kinds of integers, to fractions, complex
numbers, quaternions, continued fractions, and to numbers represented with an arbitrary
base.

What is 10 to the 90-th power in base 327

radix (10%*90,32)

returns:

FMM30955CSEIVOILKH820CN3I7PICQUOCQMDOFV6TPO0O0000000000000000

Type: RadixExpansion 32

The AXIOM numerical library can be enhanced with a substantial number of functions
from the NAG library of numerical and statistical algorithms. These functions will provide
coverage of a wide range of areas including roots of functions, Fourier transforms, quadra-
ture, differential equations, data approximation, non-linear optimization, linear algebra, ba-
sic statistics, step-wise regression, analysis of variance, time series analysis, mathematical
programming, and special functions. Contact the Numerical Algorithms Group Limited,
Oxford, England.
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0.1.3 Graphics

You may often want to visualize a symbolic formula or draw a graph from a set of numerical
values. To do this, you can call upon the Axiom graphics capability.

Draw Jo(1/22 + y2) for —20 < z,y < 20.

draw (5*besselJ(0,sqrt (x**2+y**2)), x=-20..20, y=-20..20)

Figure 1: Jo(v/22 + y?) for —20 < 2,y < 20

Graphs in Axiom are interactive objects you can manipulate with your mouse. Just click
on the graph, and a control panel pops up. Using this mouse and the control panel, you
can translate, rotate, zoom, change the coloring, lighting, shading, and perspective on the
picture. You can also generate a PostScript copy of your graph to produce hard-copy output.

0.1.4 HyperDoc

HyperDoc presents you windows on the world of Axiom, offering on-line help, examples,
tutorials, a browser, and reference material. HyperDoc gives you on-line access to this
document in a “hypertext” format. Words that appear in a different font (for example,
Matrix, factor, and category) are generally mouse-active; if you click on one with your
mouse, HyperDoc shows you a new window for that word.
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Solve Basic Conmand

would you 1ike? .
ot § Soluti d in terms of reots of
irreducible polynomials
8 ic Solutions Solutions expressed in terms of
approximate real or complex numbers
EIRacd¥al Solutions Solutions expressed in terms of radicals
if it is possible o

| Dfalculus Compute integrals, deri;rlq
| OMatrix  Create a matrix

O Jyaw Create 20 or 3B plots,

eries Create a power series

CLIC o Solve Solve an equation or system of
\ W

| EXIT

it do you want to solve?
e Of Linear Equations

sten of Polynonial Equations
J8 D04 Single Polynosial Equation
cu Ny ¢

@ Enter the Equation:

Figure 2: Hyperdoc opening menu

As another example of a HyperDoc facility, suppose that you want to compute the roots of
24 — 492* + 9 to 49 digits (as in our previous example) and you don’t know how to tell
Axiom to do this. The “basic command” facility of HyperDoc leads the way. Through the
series of HyperDoc windows shown in figure @ on page @ and the specified mouse clicks, you
and HyperDoc generate the correct command to issue to compute the answer.

0.1.5 Interactive Programming

Axiom’s interactive programming language lets you define your own functions. A simple
example of a user-defined function is one that computes the successive Legendre polynomials.
Axiom lets you define these polynomials in a piece-wise way.

The first Legendre polynomial.

p(0) == 1
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Type: Void
The second Legendre polynomial.
p(1) ==x

Type: Void
The n-th Legendre polynomial for (n > 1).
pm) == ((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n

Type: Void

In addition to letting you define simple functions like this, the interactive language can be
used to create entire application packages. All the graphs in the Axiom images section were
created by programs written in the interactive language.

The above definitions for p do no computation—they simply tell Axiom how to compute
p(k) for some positive integer k.

To actually get a value of a Legendre polynomial, you ask for it.

What is the tenth Legendre polynomial?

p(10)

Compiling function p with type Integer -> Polynomial Fraction
Integer
Compiling function p as a recurrence relation.

46189 10 _ 109395 4 45045 26 15015 A 3465 L2 63
256 256 128 128 256 256

Type: Polynomial Fraction Integer

Axiom applies the above pieces for p to obtain the value of p(10). But it does more: it
creates an optimized, compiled function for p. The function is formed by putting the pieces
together into a single piece of code. By compiled, we mean that the function is translated
into basic machine-code. By optimized, we mean that certain transformations are performed
on that code to make it run faster. For p, Axiom actually translates the original definition
that is recursive (one that calls itself) to one that is iterative (one that consists of a simple
loop).

What is the coefficient of 20 in p(90)?
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coefficient (p(90),x,90)

5688265542052017822223458237426581853561497449095175
77371252455336267181195264

Type: Polynomial Fraction Integer

In general, a user function is type-analyzed and compiled on first use. Later, if you use it
with a different kind of object, the function is recompiled if necessary.

0.1.6 Data Structures

A variety of data structures are available for interactive use. These include strings, lists,
vectors, sets, multisets, and hash tables. A particularly useful structure for interactive use
is the infinite stream:

Create the infinite stream of derivatives of Legendre polynomials.
[D(p(1),x) for i imn 1..]

15 3 35 15 315 105 15
1 19 o9 9 99 3 1o ~dlo , 1Uo o 1o
,3x,2x 2,2x 23:,833 4x—|—8,

@@ﬁ_gﬁ—i—%x73003336——3465334 %332—3*5
3 4 8 716 16 16 16’
6435 - 9009 5 3465 , 315
16 16 16 16
109395 o 45045 o 45045 , 3465 , 315
128 32 64 32 128’

230945 4 109395 - 135135 , 15015 4 = 3465
xr~ — T+ xr° — r° + T,...
128 32 64 32 128

Type: Stream Polynomial Fraction Integer

Streams display only a few of their initial elements. Otherwise, they are “lazy”: they only
compute elements when you ask for them.

Data structures are an important component for building application software. Advanced
users can represent data for applications in optimal fashion. In all, Axiom offers over forty
kinds of aggregate data structures, ranging from mutable structures (such as cyclic lists and
flexible arrays) to storage efficient structures (such as bit vectors). As an example, streams
are used as the internal data structure for power series.

What is the series expansion of log(cot(x)) about = = /27
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series(log(cot(x)),x = %pi/2)

10 ﬂ +1(xff>2+l<xff)4+ﬁ(xff)6+
& 2 3 2 90 2 2835 2

127 ( 7r)8+ 146 ( 7r)10+0 ( 77)11
—— |z — = — |z — = T — =
18900 2 66825 2 2
Type: GeneralUnivariatePowerSeries(Expression Integer,x,pi/2)

Series and streams make no attempt to compute all their elements! Rather, they stand ready
to deliver elements on demand.

What is the coefficient of the 50-th term of this series?
coefficient (%,50)

44590788901016030052447242300856550965644
7131469286438669111584090881309360354581359130859375

Type: Expression Integer

0.1.7 Mathematical Structures

Axiom also has many kinds of mathematical structures. These range from simple ones (like
polynomials and matrices) to more esoteric ones (like ideals and Clifford algebras). Most
structures allow the construction of arbitrarily complicated “types.”

Even a simple input expression can result in a type with several levels.

matrix [ [x + %i,0], [1,-2] 1

x+% 0
1 -2
Type: Matrix Polynomial Complex Integer

The Axiom interpreter builds types in response to user input. Often, the type of the result
is changed in order to be applicable to an operation.

The inverse operation requires that elements of the above matrices are fractions.

inverse (%)

1
x—|—1%i

- - _1
2 x + 2%i 2

Type: Union(Matrix Fraction Polynomial Complex Integer,...)
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0.1.8 Pattern Matching

A convenient facility for symbolic computation is “pattern matching.” Suppose you have a
trigonometric expression and you want to transform it to some equivalent form. Use a rule
command to describe the transformation rules you need. Then give the rules a name and
apply that name as a function to your trigonometric expression.

Introduce two rewrite rules.

sinCosExpandRules := rule
sin(x+y) == sin(x)*cos(y) + sin(y)*cos(x)
cos(x+y) == cos(x)*cos(y) - sin(x)*sin(y)
sin(2%x) == 2*sin(x)*cos(x)
cos(2%x) == cos(x)**2 - sin(x)**2

{sin(y + x) == cos(x)sin(y) + cos(y)sin(x),
cos(y + x) == - sin(x)sin(y) + cos(x)cos(y),
sin(2x) == 2cos(x)sin(x),

2 2
cos(2x) == - sin(x) + cos(x) }

Type: Ruleset(Integer,Integer,Expression Integer)

Apply the rules to a simple trigonometric expression.

sinCosExpandRules (sin(a+2*b+c))
(fcos (a) sin (b)* — 2 cos (b) sin (a) sin (b) 4 cos (a) cos (b)Q) sin (¢)—
cos (¢) sin (a) sin (b)* 4 2 cos (a) cos (b) cos (c) sin (b)+
cos (b)? cos (c) sin (a)
Type: Expression Integer

Using input files, you can create your own library of transformation rules relevant to your
applications, then selectively apply the rules you need.

0.1.9 Polymorphic Algorithms

All components of the Axiom algebra library are written in the Axiom library language. This
language is similar to the interactive language except for protocols that authors are obliged
to follow. The library language permits you to write “polymorphic algorithms,” algorithms
defined to work in their most natural settings and over a variety of types.

Define a system of polynomial equations S.
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S = [3*x**x3 + y + 1 = 0,y**2 = 4]
[y+3x3+120,y2=4]
Type: List Equation Polynomial Integer

Solve the system S using rational number arithmetic and 30 digits of accuracy.

solve(S,1/10%*30)

[y:27$:_1]

g 1757879671211184245283070414507
Y T T 535301200456458802993406410752 |

Type: List List Equation Polynomial Fraction Integer
Solve S with the solutions expressed in radicals.

radicalSolve(S)

—%%+1}
5 ,

{wzlx:—u{y:zx:

y:—27x:

R e

[y:_g ;C:\/W?’_ll [y:_Q mz_\/jl\/‘g’_lH
’ 23 | ’ 2 V3

Type: List List Equation Expression Integer

While these solutions look very different, the results were produced by the same internal
algorithm! The internal algorithm actually works with equations over any “field.” Examples
of fields are the rational numbers, floating point numbers, rational functions, power series,
and general expressions involving radicals.

0.1.10 Extensibility

Users and system developers alike can augment the Axiom library, all using one common
language. Library code, like interpreter code, is compiled into machine binary code for
run-time efficiency.

Using this language, you can create new computational types and new algorithmic packages.
All library code is polymorphic, described in terms of a database of algebraic properties.
By following the language protocols, there is an automatic, guaranteed interaction between
your code and that of colleagues and system implementers.
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A Technical Introduction

Axiom has both an interactive language for user interactions and a programming language
for building library modules. Like Modula 2, PASCAL, FORTRAN, and Ada, the program-
ming language emphasizes strict type-checking. Unlike these languages, types in Axiom are
dynamic objects: they are created at run-time in response to user commands.

Here is the idea of the Axiom programming language in a nutshell. Axiom types range
from algebraic ones (like polynomials, matrices, and power series) to data structures (like
lists, dictionaries, and input files). Types combine in any meaningful way. You can build
polynomials of matrices, matrices of polynomials of power series, hash tables with symbolic
keys and rational function entries, and so on.

Categories define algebraic properties to ensure mathematical correctness. They ensure, for
example, that matrices of polynomials are OK, but matrices of input files are not. Through
categories, programs can discover that polynomials of continued fractions have a commuta-
tive multiplication whereas polynomials of matrices do not.

Categories allow algorithms to be defined in their most natural setting. For example, an
algorithm can be defined to solve polynomial equations over any field. Likewise a great-
est common divisor can compute the “ged” of two elements from any Euclidean domain.
Categories foil attempts to compute meaningless “gcds”, for example, of two hashtables.
Categories also enable algorithms to be compiled into machine code that can be run with
arbitrary types.

The Axiom interactive language is oriented towards ease-of-use. The Axiom interpreter uses
type-inferencing to deduce the type of an object from user input. Type declarations can
generally be omitted for common types in the interactive language.

So much for the nutshell. Here are these basic ideas described by ten design principles:

0.1.11 Types are Defined by Abstract Datatype Programs

Basic types are called domains of computation, or, simply, domains. Domains are defined
by Axiom programs of the form:

Name(...): Exports == Implementation

Each domain has a capitalized Name that is used to refer to the class of its members. For ex-
ample, Integer denotes “the class of integers,” Float, “the class of floating point numbers,”
and String, “the class of strings.”

The “...” part following Name lists zero or more parameters to the constructor. Some basic
ones like Integer take no parameters. Others, like Matrix, Polynomial and List, take
a single parameter that again must be a domain. For example, Matrix(Integer) denotes
“matrices over the integers,” Polynomial (Float) denotes “polynomial with floating point
coefficients,” and List (Matrix (Polynomial (Integer))) denotes “lists of matrices of
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polynomials over the integers.” There is no restriction on the number or type of parameters
of a domain constructor.

SquareMatrix(2,Integer) is an example of a domain constructor that accepts both a particular
data value as well as an integer. In this case the number 2 specifies the number of rows and
columns the square matrix will contain. Elements of the matricies are integers.

The Exports part specifies operations for creating and manipulating objects of the domain.
For example, type Integer exports constants 0 and 1, and operations “+”, “=” and “*”.
While these operations are common, others such as odd? and bit? are not. In addition
the Exports section can contain symbols that represent properties that can be tested. For
example, the Category EntireRing has the symbol noZeroDivisors which asserts that if a
product is zero then one of the factors must be zero.

The Implementation part defines functions that implement the exported operations of the
domain. These functions are frequently described in terms of another lower-level domain
used to represent the objects of the domain. Thus the operation of adding two vectors of
real numbers can be described and implemented using the addition operation from Float.

0.1.12 The Type of Basic Objects is a Domain or Subdomain

Every Axiom object belongs to a unique domain. The domain of an object is also called its
type. Thus the integer 7 has type Integer and the string "daniel" has type String.

The type of an object, however, is not unique. The type of integer 7 is not only Integer
but NonNegativeInteger, PositiveInteger, and possibly, in general, any other “subdo-
main” of the domain Integer. A subdomain is a domain with a “membership predicate”.
PositivelInteger is a subdomain of Integer with the predicate “is the integer > 07”.

Subdomains with names are defined by abstract datatype programs similar to those for
domains. The Ezport part of a subdomain, however, must list a subset of the exports of
the domain. The Implementation part optionally gives special definitions for subdomain
objects.

0.1.13 Domains Have Types Called Categories

Domain and subdomains in Axiom are themselves objects that have types. The type of a
domain or subdomain is called a category. Categories are described by programs of the form:

Name(...): Category == Exports

The type of every category is the distinguished symbol Category. The category Name
is used to designate the class of domains of that type. For example, category Ring des-
ignates the class of all rings. Like domains, categories can take zero or more parame-
ters as indicated by the “...” part following Name. Two examples are Module(R) and
MatrixCategory(R,Row,Col).
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The Exports part defines a set of operations. For example, Ring exports the operations “0”,
“17, “47“=” "and “¥”. Many algebraic domains such as Integer and Polynomial (Float)
are rings. String and List (R) (for any domain R) are not.

Categories serve to ensure the type-correctness. The definition of matrices states Matrix (R:
Ring) requiring its single parameter R to be a ring. Thus a “matrix of polynomials” is
allowed, but “matrix of lists” is not.

Categories say nothing about representation. Domains, which are instances of category
types, specify representations.

0.1.14 Operations Can Refer To Abstract Types

All operations have prescribed source and target types. Types can be denoted by symbols
that stand for domains, called “symbolic domains.” The following lines of Axiom code use
a symbolic domain R:

R: Ring
power: (R, NonNegativeInteger): R -> R
power(x, n) == x *x n

Line 1 declares the symbol R to be a ring. Line 2 declares the type of power in terms of
R. From the definition on line 3, power(3,2) produces 9 for x = 3 and R = Integer. Also,
power(3.0,2) produces 9.0 for z = 3.0 and R = Float. power(”oxford’,2) however fails
since "oz ford” has type String which is not a ring.

Using symbolic domains, algorithms can be defined in their most natural or general setting.

0.1.15 Categories Form Hierarchies

Categories form hierarchies (technically, directed-acyclic graphs). A simplified hierarchical
world of algebraic categories is shown below. At the top of this world is SetCategory, the
class of algebraic sets. The notions of parents, ancestors, and descendants is clear. Thus
ordered sets (domains of category OrderedSet) and rings are also algebraic sets. Likewise,
fields and integral domains are rings and algebraic sets. However fields and integral domains
are not ordered sets.

SetCategory +---- Ring ---- IntegralDomain ---- Field
|
+--—- Finite -+
I \
+---- OrderedSet --———- + OrderedFinite

Figure 1. A simplified category hierarchy.
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0.1.16 Domains Belong to Categories by Assertion

A category designates a class of domains. Which domains? You might think that Ring
designates the class of all domains that export 0, 1, “+”, “=” and “x”. But this is not so.
Each domain must assert which categories it belongs to.

The Export part of the definition for Integer reads, for example:
Join(OrderedSet, IntegralDomain, ...) with ...

This definition asserts that Integer is both an ordered set and an integral domain. In fact,
Integer does not explicitly export constants 0 and 1 and operations “+”, “~” and “x” at all:
it inherits them all from Ring! Since IntegralDomain is a descendant of Ring, Integer is
therefore also a ring.

Assertions can be conditional. For example, Complex (R) defines its exports by:
Ring with ... if R has Field then Field ...

Thus Complex(Float) is a field but Complex(Integer) is not since Integer is not a field.

You may wonder: “Why not simply let the set of operations determine whether a domain
belongs to a given category?”. Axiom allows operation names (for example, norm) to have
very different meanings in different contexts. The meaning of an operation in Axiom is
determined by context. By associating operations with categories, operation names can be
reused whenever appropriate or convenient to do so. As a simple example, the operation <
might be used to denote lexicographic-comparison in an algorithm. However, it is wrong to
use the same < with this definition of absolute-value:

abs(x) ==if v <0 then — x else

Such a definition for abs in Axiom is protected by context: argument x is required to be a
member of a domain of category OrderedSet.

0.1.17 Packages Are Clusters of Polymorphic Operations

In Axiom, facilities for symbolic integration, solution of equations, and the like are placed
in “packages”. A package is a special kind of domain: one whose exported operations
depend solely on the parameters of the constructor and/or explicit domains. Packages,
unlike Domains, do not specify the representation.

If you want to use Axiom, for example, to define some algorithms for solving equations of
polynomials over an arbitrary field F', you can do so with a package of the form:

MySolve(F: Field): Exports == Implementation

where Exports specifies the solve operations you wish to export from the domain and
the Implementation defines functions for implementing your algorithms. Once Axiom has
compiled your package, your algorithms can then be used for any F: floating-point numbers,
rational numbers, complex rational functions, and power series, to name a few.
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0.1.18 The Interpreter Builds Domains Dynamically

The Axiom interpreter reads user input then builds whatever types it needs to perform the
indicated computations. For example, to create the matrix

?2+1 0
M= ( 0 x/2
using the command:

M= [ [x**2+1,0],[0,x / 2] 1::Matrix(POLY(FRAC(INT)))

2
M:[erl 0}

0 x/2

Type: Matrix Polynomial Fraction Integer

the interpreter first loads the modules Matrix, Polynomial, Fraction, and Integer from
the library, then builds the domain tower “matrices of polynomials of rational numbers (i.e.
fractions of integers)”.

You can watch the loading process by first typing

)set message autoload on

In addition to the named domains above many additional domains and categories are loaded.
Most systems are preloaded with such common types. For efficiency reasons the most com-
mon domains are preloaded but most (there are more than 1100 domains, categories, and
packages) are not. Once these domains are loaded they are immediately available to the
interpreter.

Once a domain tower is built, it contains all the operations specific to the type. Computation
proceeds by calling operations that exist in the tower. For example, suppose that the user
asks to square the above matrix. To do this, the function “*” from Matrix is passed the
matrix M to compute M x M. The function is also passed an environment containing R that,
in this case, is Polynomial (Fraction (Integer)). This results in the successive calling of
the “*” operations from Polynomial, then from Fraction, and then finally from Integer.

Categories play a policing role in the building of domains. Because the argument of Matrix
is required to be a Ring, Axiom will not build nonsensical types such as “matrices of input
files”.

0.1.19 Axiom Code is Compiled

Axiom programs are statically compiled to machine code, then placed into library modules.
Categories provide an important role in obtaining efficient object code by enabling:
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e static type-checking at compile time;
e fast linkage to operations in domain-valued parameters;

e optimization techniques to be used for partially specified types (operations for “vectors
of R”, for instance, can be open-coded even though R is unknown).

0.1.20 Axiom is Extensible

Users and system implementers alike use the Axiom language to add facilities to the Axiom
library. The entire Axiom library is in fact written in the Axiom source code and available
for user modification and/or extension.

Axiom’s use of abstract datatypes clearly separates the exports of a domain (what operations
are defined) from its implementation (how the objects are represented and operations are
defined). Users of a domain can thus only create and manipulate objects through these
exported operations. This allows implementers to “remove and replace” parts of the library
safely by newly upgraded (and, we hope, correct) implementations without consequence to
its users.

Categories protect names by context, making the same names available for use in other
contexts. Categories also provide for code-economy. Algorithms can be parameterized cat-
egorically to characterize their correct and most general context. Once compiled, the same
machine code is applicable in all such contexts.

Finally, Axiom provides an automatic, guaranteed interaction between new and old code.
For example:

e if you write a new algorithm that requires a parameter to be a field, then your algorithm
will work automatically with every field defined in the system; past, present, or future.

e if you introduce a new domain constructor that produces a field, then the objects of
that domain can be used as parameters to any algorithm using field objects defined in
the system; past, present, or future.

These are the key ideas. For further information, we particularly recommend your reading
chapters 11, 12, and 13, where these ideas are explained in greater detail.
0.2 Using Axiom as a Pocket Calculator

At the simplest level Axiom can be used as a pocket calculator where expressions involving
numbers and operators are entered directly in infix notation. In this sense the more advanced
features of the calculator can be regarded as operators (e.g sin, cos, etc).
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0.2.1 Basic Arithmetic

An example of this might be to calculate the cosine of 2.45 (in radians). To do this one
would type:

(1) -> cos 2.45

—0.7702312540473073417

Type: Float

Before proceeding any further it would be best to explain the previous three lines. Firstly
the text “(1) =>” is part of the prompt that the Axiom system provides when in interactive
mode. The full prompt has other text preceding this but it is not relevant here. The number
in parenthesis is the step number of the input which may be used to refer to the results of
previous calculations. The step number appears at the start of the second line to tell you
which step the result belongs to. Since the interpreter probably loaded numberous libraries
to calculate the result given above and listed each one in the prcess, there could easily be
several pages of text between your input and the answer.

The last line contains the type of the result. The type Float is used to represent real
numbers of arbitrary size and precision (where the user is able to define how big arbitrary
is — the default is 20 digits but can be as large as your computer system can handle). The
type of the result can help track down mistakes in your input if you don’t get the answer
you expected.

Other arithmetic operations such as addition, subtraction, and multiplication behave as
expected:
6.93 *x 4.1328

28.640304

Type: Float

6.93 / 4.1328

1.6768292682926829268
Type: Float
but integer division isn’t quite so obvious. For example, if one types:

4/6
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2
3

Type: Fraction Integer

a fractional result is obtained. The function used to display fractions attempts to produce
the most readable answer. In the example:

4/2

Type: Fraction Integer

the result is stored as the fraction 2/1 but is displayed as the integer 2. This fraction
could be converted to type Integer with no loss of information but Axiom will not do so
automatically.

0.2.2 Type Conversion
To obtain the floating point value of a fraction one must convert (conversions are applied

by the user and coercions are applied automatically by the interpreter) the result to type
Float using the “::” operator as follows:

(4.6)::Float
4.6
Type: Float

Although Axiom can convert this back to a fraction it might not be the same fraction you
started with as due to rounding errors. For example, the following conversion appears to be
without error but others might not:

%::Fraction Integer

Type: Fraction Integer

where “%” represents the previous result (not the calculation).

Although Axiom has the ability to work with floating-point numbers to a very high precision
it must be remembered that calculations with these numbers are not exact. Since Axiom is
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a computer algebra package and not a numerical solutions package this should not create too
many problems. The idea is that the user should use Axiom to do all the necessary symbolic
manipulation and only at the end should actual numerical results be extracted.

If you bear in mind that Axiom appears to store expressions just as you have typed them
and does not perform any evalutation of them unless forced to then programming in the
system will be much easier. It means that anything you ask Axiom to do (within reason)
will be carried out with complete accuracy.

In the previous examples the “::” operator was used to convert values from one type to
another. This type conversion is not possible for all values. For instance, it is not possible
to convert the number 3.4 to an integer type since it can’t be represented as an integer. The
number 4.0 can be converted to an integer type since it has no fractional part.

Conversion from floating point values to integers is performed using the functions round
and truncate. The first of these 